PHOTOLYSE STEREOSPECIFIQUE D'(OXO-3 BUTYL)-TETRA-O-ACETYL-2, 3, 4, 6- **3** - D-GLUCOPYRANOSIDE EN SPIRO-C-1-SUCRE

Georges REMY, Louis COTTIER et Gérard DESCOTES

(Université C. Bernard LYON I, ERA du CNRS N° 689, ESCIL 43 Boulevard du 11 Novembre 1968-69621 - Villeurbanne-France)

Photolysis of (3-oxo butyl)-2,3,4,6-tetra-0-acetyl-B-D-

glucopyranoside leads by a stereospecific cyclisation to a C-1-spiro sugar; the conformation of the anomeric carbon is retained.

La photolyse de l'(∞ o-3 butyl)-tétra-O-acétyl-2, 3, 4, 6- β -Dglucopyranoside conduit à une cyclisation stéréospécifique en spiro-C-l sucre avec rétention de configuration au niveau du carbone anomère.

L'application de la réaction photochimique de type Norrish II aux (oxo-3 butyl)-2 tétrahydropyrannes permet d'obtenir une voie de synthèse efficace de spiro-cétals 1, 2 utilisable éventuellement pour la synthèse de polyéthers antibiotiques ionophores ³. Cette photocyclisation ne présente cependant pas de caractère stéréosélectif pour la création du carbone cétalique pour des hétérocycles oxygénés substitués en 6.

La synthèse d'analogues structuraux de tels spiro-cétals en série glucidique a permis d'observer une photocyclisation identique mais de caractère stéréospécifique pour l'anomère gluco $\beta \cdot (\underline{D})$ 3 présentant un groupe acétate en C-2.

La réaction de Koenigs-Knorr appliquée à 1a ⁴ ou 1b ⁵ utilisant l'hydroxy-4 butanone-2 permet de préparer de façon stéréospécifique les anomères **(2)** et **(3)** (oxo-3 butyl)-tétra-Q-acétyl-2, 3, 4, 6-<u>D</u>-glucopyranosides. Les configurations anomériques de 2 et 3 sont confirmées par les déplacements et les constantes de couplage du proton anomère (2 · δ 5,09, d, J_{1,2} 4Hz; 3 δ 4,73, d, J_{1,2} 8Hz).

Si l'anomère \mathbf{q} (D) 2 ne se photoréarrange que lentement sans donner de produits définis, par contre l'anomère $\boldsymbol{\beta}$ (D) 3 en solution benzénique subit une transformation complète en 40 heures en spiro-glycoside 4 de configuration $\boldsymbol{\beta}$ (D) confirmée par étude en ¹H et ¹³C r.m.n. (tableau l) et par cristallographie ⁶. Les isomères cis et trans de 4 au niveau du cycle tétrahydrofurannique sont de même aisément identifiés sur les bases de données de r.m.n. (tableau l) signalées précédemment en série hétérocyclique ² (Δ $\boldsymbol{\beta}$ _{CH3} trans - cis = 0, 2 ppm dans CD₃COCD₃).

Annsi, on observe la plus grande photostabilité de l'hydrogène anomèrique équatorial de 2 comme cela avait été observé avec moins de netteté en série hétérocyclique oxygénée⁷. En outre, la configuration β (\underline{D}) de 4 indique une rétention de configuration lors de la photocyclisation de 3.

La stéréospécificité de cette photocyclisation exige cependant la présence d'un groupe acétate en C-2. En effet, les dérivés (\underline{D}) 5 et 6 préparés par application de la réaction de Ferrier ⁸ au tri-Q-acétyl-3, 4, 6-<u>D</u>-glucal se photocyclisent en donnant les mélanges de stéréoisomères prévisibles.

Les paires de stéréoisomères obtenus respectivement pour 7 et 8 (tableau 1) indiquent que la réaction de photocyclisation est possible pour des anomères α (\underline{D}) et qu'elle se déroule sans stéréosélectivité particulière.

La présence du groupe acétate en C-2 rend donc stéréospécifique la photocyclisation du seul anomère β (D) 3. L'influence de la configuration du groupe acétate est actuellement étudiée en vue d'interpréter cet effet et de généraliser cet te photocyclisation.

Tableau l

Données physiques et spectrales des spiro C-l-sucres.

		Rdt *	[ʎ] _D **	F°C	rmn ^l h (cd ₃ cocd ₃)		¹³ C (CC1 ₄)		
		(%)	(CHC1 ₃)		б _{сн3}	б _{он}	C -1	C-9	Me
4	<u>cis</u>	11	-3 (c,1.0)	116	1,28	3,70	102,8	79,1	22,0
	trans	33	-16,1 (c,1.0)	134	1,54	2,80	106,0	80,8	21,8
7	a b }	13	-	liq.	1,33	2,72 2,82	• · · · · · · · · · · · · · · · · · · ·		
	с	7	+180 (c,1.0)	74	1,28	2,20			
	d	6	+141 (c,1.0)	liq.	1,30	3,05			
8	a	8	-6,6 (c,1.0)	68	1,23	2,83	103,2	78,9	21,7
	b	4	+67,2 (c,0.4)	liq.	1,23	2,74	102,9	78,6	21,4
	c d	21	+77 (c,1.0) +7,5 (c,0.9)	liq.	1,33	2,43 2,82	106,4 106,2	80,7 80,3	21,0 21,0

^{*}Rendement en produit pur calculé à partir de la quantité de produit mise en jeu.

** Les pouvoirs rotatoires ont été pris à températures différentes. 26°C pour 4 et 24°C pour 7, 8a et 8b; 25°C pour 8c et 20°C pour 8d.

BIBLIOGRAPHIE

- 1. C. BERNASCONI, L. COTTIER et G. DESCOTES, <u>Bull. Soc. Chim. Fr.</u>, 101 et 107 (1977).
- 2. L. COTTIER et G. DESCOTES, J. Heterocycl. Chem., 1271 (1977).
- a. J.F.BLOUNT, R.H.EVANS, C.M.LIU, T.HERMANN et J.W. WESTLEY, J. Chem. Soc., Chem. Commun., 853 (1975).
 - b. G. JEMINET, Ann. Biol., 15, 449 (1976).
 - c. T. FUKUYAMA, B. VRANESIC, D. P. NEGRI et Y. KISHI, <u>Tetrahedron Lett.</u> 2741 (1978).
- 4. P. BIRGL et H. KEPPLER, Ber., 59, 1588 (1926).
- 5. R.U. LEMIEUX, Methods Carbohydr. Chem., 2, 221 (1963).
- 6. G. REMY, L. COTTIER et G. DESCOTES, R. FAURE, H. LOISELEUR et G. THOMAS-DAVID, Acta. Crystallogr. (1979) à paraitre.
- C. BERNASCONI et G. DESCOTES, C. R. Acad. Sci., Sér. C, 280, 469 (1975);
 R. D. Mc KELVEY, Carbohydr. Res., 42, 187 (1975);
 K. HAYDAY et R. D. Mc KELVEY, J. Org. Chem., 41, 2222(1976).
- 8. R.J. FERRIER et N. PRASAD, J. Chem. Soc. (C), 570 (1969).

(Received in France 16 February 1979)